APGL4SR: A Generic Framework with Adaptive and Personalized Global Collaborative Information in Sequential Recommendation

Mingjia Yin mingjia-yin@mail.ustc.edu.cn Anhui Province Key Laboratory of Big Data Analysis and Application, University of Science and Technology of China & State Key Laboratory of Cognitive Intelligence Hefei, China

Likang Wu wulk@mail.ustc.edu.cn Anhui Province Key Laboratory of Big Data Analysis and Application, University of Science and Technology of China & State Key Laboratory of Cognitive Intelligence Hefei, China

Ruiming Tang tangruiming@huawei.com Huawei Noah's Ark Lab Shenzhen, China Hao Wang* wanghao3@ustc.edu.cn Anhui Province Key Laboratory of Big Data Analysis and Application, University of Science and Technology of China & State Key Laboratory of Cognitive Intelligence Hefei, China

Sirui Zhao sirui@mail.ustc.edu.cn Anhui Province Key Laboratory of Big Data Analysis and Application, University of Science and Technology of China & State Key Laboratory of Cognitive Intelligence Hefei, China

Defu Lian liandefu@ustc.edu.cn Anhui Province Key Laboratory of Big Data Analysis and Application, University of Science and Technology of China & State Key Laboratory of Cognitive Intelligence Hefei, China Xiang Xu demon@mail.ustc.edu.cn Anhui Province Key Laboratory of Big Data Analysis and Application, University of Science and Technology of China & State Key Laboratory of Cognitive Intelligence Hefei, China

Wei Guo Yong Liu guowei67@huawei.com liu.yong6@huawei.com Huawei Singapore Research Center Singapore

Enhong Chen cheneh@ustc.edu.cn Anhui Province Key Laboratory of Big Data Analysis and Application, University of Science and Technology of China & State Key Laboratory of Cognitive Intelligence Hefei, China

Chongging University

of Technology

code: <u>https://github.com/Graph-Team/APGL4SR.</u>

CIKM 2023

Reported by Minqin Li

Introduction

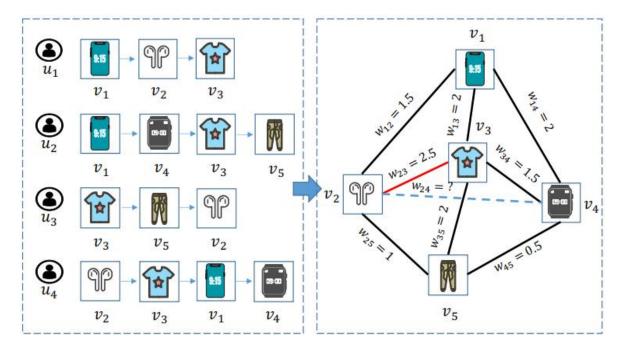


Figure 1: A toy example to illustrate the importance of global collaborative modeling in sequential recommendation systems. The graph is constructed based on the rules in Sec. 3.2.

Existing methods usually focus on intra-sequence modeling while overlooking exploiting global collaborative information by inter-sequence modeling, resulting in inferior recommendation performance.

(1) How to capture adaptive global collaborative information effectively and efficiently.

(2)How to extract and utilize personalized information from the global collaborative information.

Method

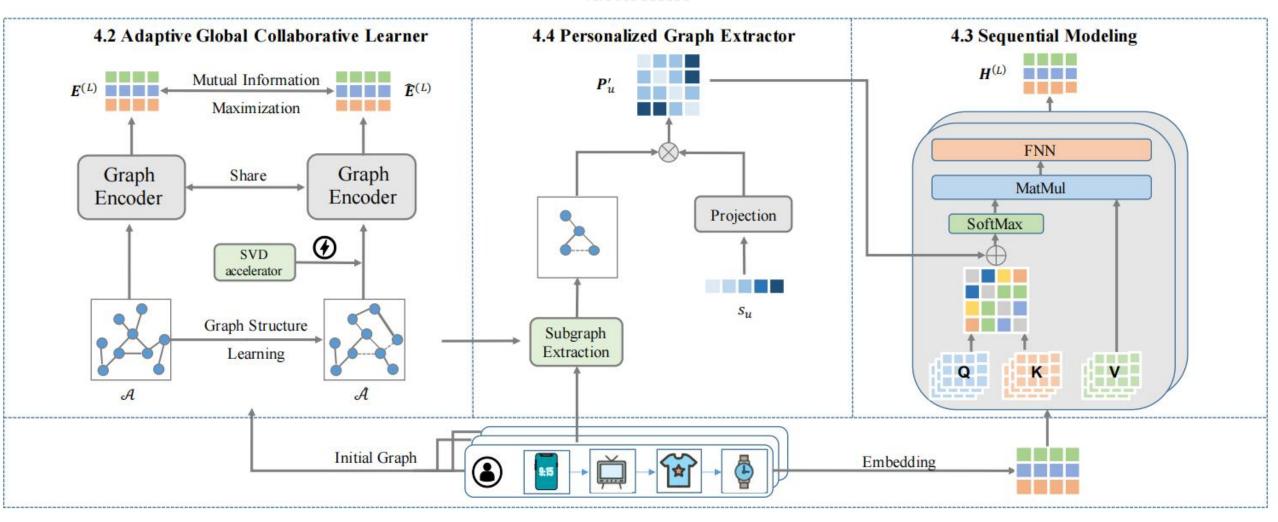
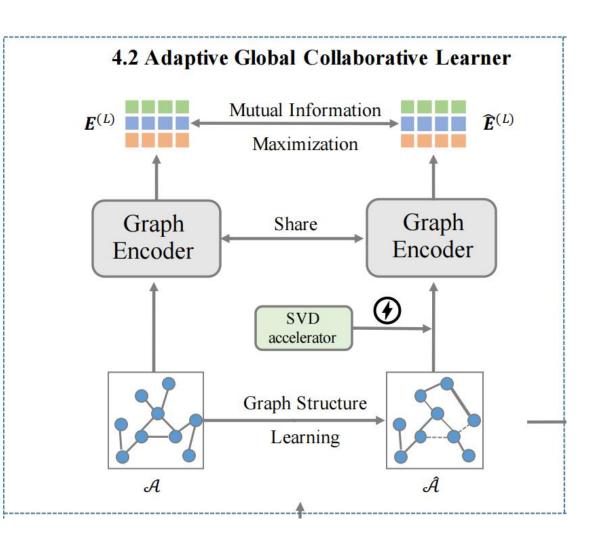
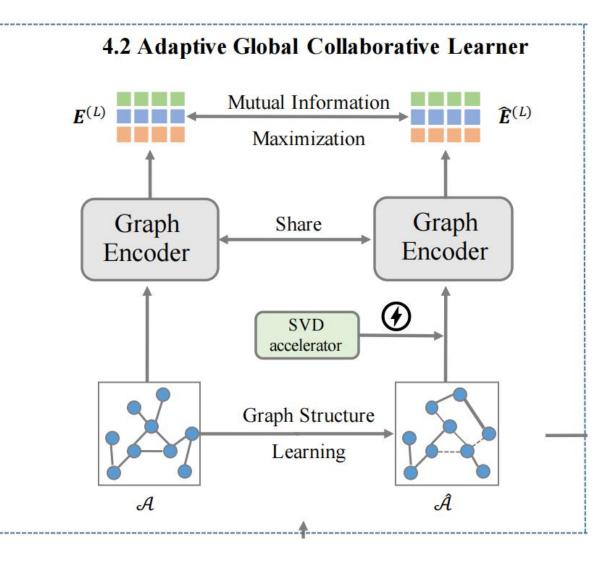



Figure 2: The framework of the proposed APGL4SR model.

Method

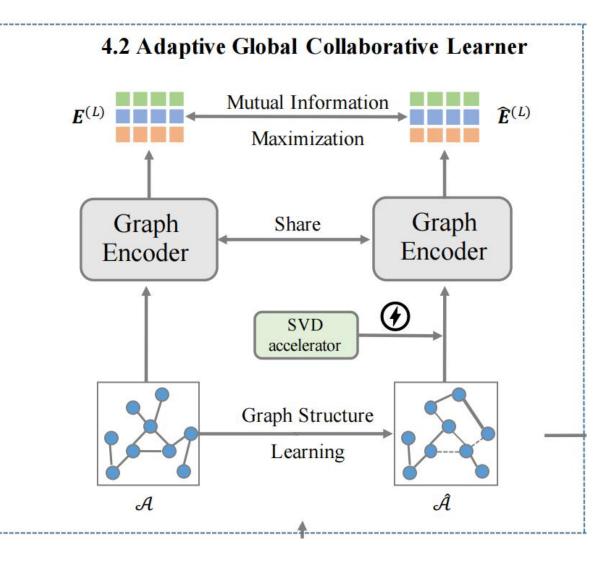
$$\mathcal{A}_{v_i,v_j} \leftarrow \left(\frac{1}{\deg(v_i)} + \frac{1}{\deg(v_j)}\right) \mathcal{A}_{v_i,v_j} \qquad (1)$$
$$\mathbf{E}^{(l)} = \mathcal{A}\mathbf{E}^{(l-1)} \qquad (2)$$

$$\mathbf{E}^{(L)} \leftarrow \frac{1}{L} (\mathbf{E}^{(0)} + \mathbf{E}^{(1)} + \dots + \mathbf{E}^{(L)})$$
 (3)


$$\hat{\mathcal{A}} = \mathcal{A} + \alpha \mathcal{A}' \tag{4}$$

$$\mathcal{A}' = (\mathcal{A}\mathbf{W}_{US})(\mathcal{A}\mathbf{W}_V)^T$$
(5)
$$\mathbf{E}^{(l)} = \mathcal{A}\mathbf{E}^{(l-1)} + (\mathcal{A}\mathbf{W}_{US})(\mathcal{A}\mathbf{W}_V)^T \mathbf{E}^{(l-1)}$$
(6)

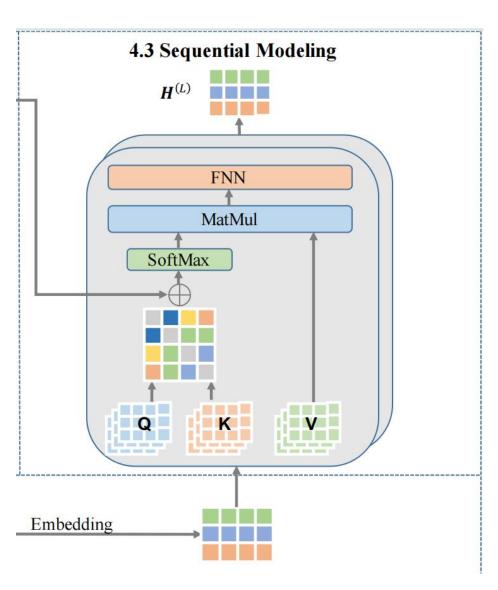
1


 $I(X;Y) \equiv H(X) - H(X|Y) \equiv H(Y) - H(Y|X)$ ⁽⁷⁾

$$C_{InfoNCE} = -\sum_{i=1}^{K} \log \frac{e^{f(x_i, y_i)}}{\sum_{j=1}^{K} e^{f(x_i, y_j)}}$$
(8)

$$C_{gce} = -\sum_{i=1}^{|B|} \log \frac{e^{\cos(\mathbf{e}_{i}^{(L)}, \hat{\mathbf{e}}_{i}^{(L)})/\tau}}{\sum_{j=1}^{|B|} e^{\cos(\mathbf{e}_{i}^{(L)}, \hat{\mathbf{e}}_{j}^{(L)})/\tau}}$$
(9)

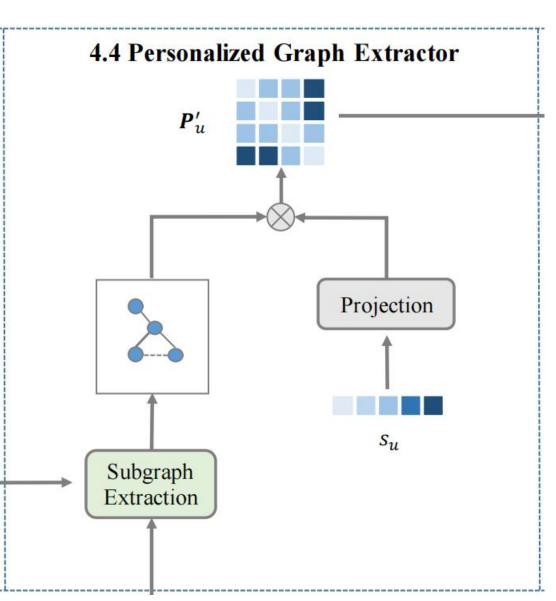
Method



 $I(X;Y) \equiv H(X) - H(X|Y) \equiv H(Y) - H(Y|X)$ (10)

$$\mathcal{L}_{InfoNCE} = -\sum_{i=1}^{K} \log \frac{e^{f(x_i, y_i)}}{\sum_{j=1}^{K} e^{f(x_i, y_j)}}$$
(11)

$$\mathcal{L}_{gce} = -\sum_{i=1}^{|B|} \log \frac{e^{\cos(\mathbf{e}_{i}^{(L)}, \hat{\mathbf{e}}_{i}^{(L)})/\tau}}{\sum_{j=1}^{|B|} e^{\cos(\mathbf{e}_{i}^{(L)}, \hat{\mathbf{e}}_{j}^{(L)})/\tau}}$$
(12)



$$\mathbf{H}^{(l)} = FFN(MHSA(\mathbf{H}^{(l-1)}))$$
(13)
$$Attention(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \left(softmax\left(\frac{\mathbf{Q}\mathbf{K}^{T}}{\sqrt{d}}\right)\right)\mathbf{V}$$
(14)

$$\mathcal{L}_{rec} = \sum_{u=1}^{|\mathcal{U}|} \sum_{t=2}^{|s_u|} (-\log(\sigma(\mathbf{h}_{t-1}^u \cdot \mathbf{v}_t^u)) - \sum_{v_j \notin s_u} \log(1 - \sigma(\mathbf{h}_{t-1}^u \cdot \mathbf{v}_j)))$$
(15)

$$Attention(\mathbf{Q}_{u}, \mathbf{K}_{u}, \mathbf{V}_{u}) = \left(softmax\left(\frac{\mathbf{Q}_{u}\mathbf{K}_{u}^{T}}{\sqrt{d}} + \mathbf{P}_{u}'\right)\right)\mathbf{V}_{u}$$
(16)
$$\mathbf{P}_{u}' = MLP(\mathbf{s}_{u})\tilde{\mathcal{A}}$$
(17)

$$\mathcal{L}_{total} = \mathcal{L}_{rec} + \lambda_1 \mathcal{L}_{gce} + \lambda_2 \mathcal{L}_{seq} \tag{18}$$

Table 1: Statistics of the datasets.

Dataset	Beauty	Sports	Toys	Yelp
$ \mathcal{U} $	22,363	35,598	19,412	30,431
$ \mathcal{V} $	12,101	18,357	11,924	20,033
# Interactions	0.2m	0.3m	0.17m	0.3m
Avg. length	8.9	8.3	8.6	8.3
Sparsity	99.95%	99.95%	99.93%	99.95%

Table 2: The overall performance of all baselines. The best result is bolded while the second-best result is underlined in each row. We run the proposed method and the most competitive baselines with ten different random seeds and analyze statistical significance, where * represents p-value < 0.01, ** represents p-value < 0.001.

Dataset	Metrics	BPR	Caser	GRU4Rec	SASRec	SR-GNN	GC-SAN	GCE-GNN	DGNN	CL4SRec	GCL4SR	DuoRec	ICLRec	APGL4SR	Improv
Beauty	HR@5	0.0191	0.0228	0.0190	0.0356	0.0231	0.0309	0.0260	0.0371	0.0453	0.0415	0.0449	0.0496 ± 0.0010	0.0543 ± 0.0010	9.47%**
	HR@20	0.0527	0.0601	0.0568	0.0855	0.0609	0.0798	0.0653	0.0876	0.1045	0.1012	0.1039	0.1059 ± 0.0013	0.1093±0.0011	3.19%**
	NDCG@5	0.0119	0.0135	0.0119	0.0227	0.0133	0.0163	0.0157	0.0240	0.0294	0.0263	0.0284	0.0323 ± 0.0006	0.0372±0.0007	12.8%**
	NDCG@20	0.0218	0.0272	0.0224	0.0373	0.0264	0.0302	0.0286	0.0392	0.0461	0.0421	0.0453	0.0480 ± 0.0006	0.0527±0.0006	8.07%**
Sports	HR@5	0.0129	0.0154	0.0110	0.0183	0.0152	0.0161	0.0154	0.0197	0.0261	0.0233	0.0265	0.0272 ± 0.0005	0.0299±0.0007	9.56%**
	HR@20	0.0344	0.0399	0.0289	0.0450	0.0405	0.0437	0.0425	0.0470	0.0611	0.0571	0.0615	0.0637 ± 0.0007	0.0664±0.0009	4.30%**
	HR@5	0.0091	0.0114	0.0065	0.0135	0.0075	0.0084	0.0082	0.0139	0.0166	0.0145	0.0169	0.0179 ± 0.0002	0.0201±0.0006	12.0%**
	HR@20	0.0136	0.0178	0.0115	0.0186	0.0153	0.0162	0.0159	0.0203	0.0263	0.0232	0.0267	0.0281 ± 0.0002	0.0304±0.0007	8.11%**
Toys	HR@5	0.0181	0.0142	0.0178	0.0431	0.0282	0.0417	0.0312	0.0445	0.0535	0.0501	0.0542	0.0577 ± 0.0005	0.0627±0.0009	8.64%**
	HR@20	0.0495	0.0431	0.0467	0.0886	0.0645	0.0863	0.0721	0.0921	0.1098	0.1042	0.1121	0.1136 ± 0.0010	0.1176±0.0012	3.43%**
	NDCG@5	0.0135	0.0094	0.0114	0.0283	0.0191	0.0253	0.0223	0.0291	0.0365	0.0326	0.0372	0.0393 ± 0.0005	0.0433±0.0005	10.1%**
	NDCG@20	0.0225	0.0172	0.0194	0.0409	0.0292	0.0382	0.0343	0.0421	0.0528	0.0487	0.0537	0.0551 ± 0.0003	0.0588±0.0006	6.72%**
Yeln	HR@5	0.0112	0.0137	0.0129	0.0160	0.0117	0.0150	0.0121	0.0166	0.0227	0.0204	0.0215	0.0239 ± 0.0005	0.0248±0.0005	3.82%*
	HR@20	0.0371	0.0401	0.0369	0.0437	0.0375	0.0417	0.0382	0.0452	0.0629	0.0587	0.0621	0.0650 ± 0.0004	0.0670±0.0003	3.07%**
	NDCG@5	0.0084	0.0088	0.0078	0.0101	0.0087	0.0096	0.0091	0.0105	0.0143	0.0121	0.0137	0.0150 ± 0.0003	0.0157±0.0002	4.43%*
	NDCG@20	0.0143	0.0152	0.0145	0.0177	0.0148	0.0171	0.0157	0.0180	0.0255	0.0214	0.0246	0.0264 ± 0.0001	0.0274±0.0002	3.66%**
													10		

Table 3: Abalation study of APGL4SR on NDCG@20.

Model	Beauty	Sports	Toys	Yelp
(A) APGL4SR	0.0538	0.0308	0.0584	0.0275
(B) w/o AGC	0.0470	0.0271	0.0535	0.0261
(C) w/o PGE	0.0526	0.0297	0.0573	0.0267
(D) \mathcal{A}_{SVD}	0.0089	0.0079	0.0525	0.0248
(E) Fusion	0.0370	0.0195	0.0398	0.0178

Table 4: Analysis of versatility of APGL4SR on NDCG@20.

Model	Beauty	Sports	Toys	Yelp
(A) GRU4Rec	0.0224	0.0115	0.0194	0.0145
(B) GRU4Rec+AGL	0.0290	0.0152	0.0254	0.0180
(C) SASRec	0.0373	0.0186	0.0409	0.0177
(D) SASRec+APGL	0.0452	0.0244	0.0513	0.0195
(E) ICLRec	0.0480	0.0281	0.0551	0.0264
(F) ICLRec+APGL	0.0521	0.0290	0.0581	0.0273
(G) APGL4SR	0.0538	0.0308	0.0584	0.0275

Table 5: Analysis of the effectiveness of the adaptive graph.

Model	Beauty	Sports	Toys	Yelp	
(A) APGL4SR	0.0538	0.0308	0.0584	0.0275	
(B) FPG	0.0532	0.0291	0.0599	0.0271	
(C) NP	0.0483	0.0272	0.0535	0.263	

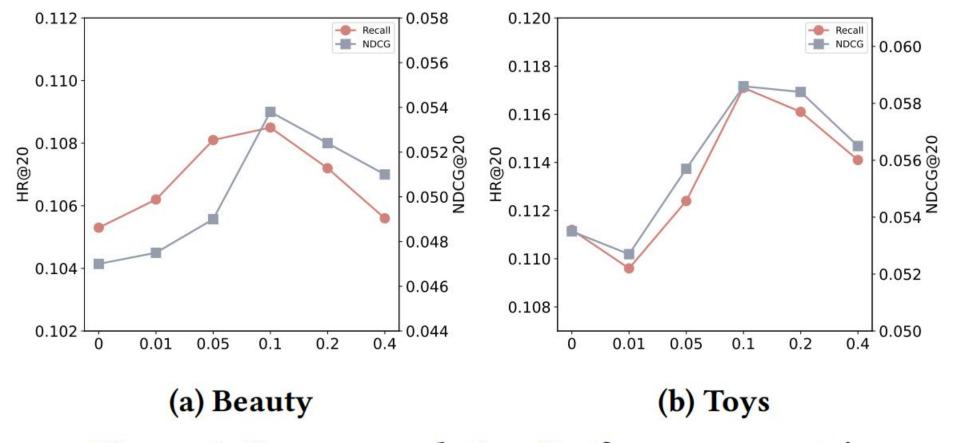


Figure 3: Recommendation Performance w.r.t λ_1

Experiments

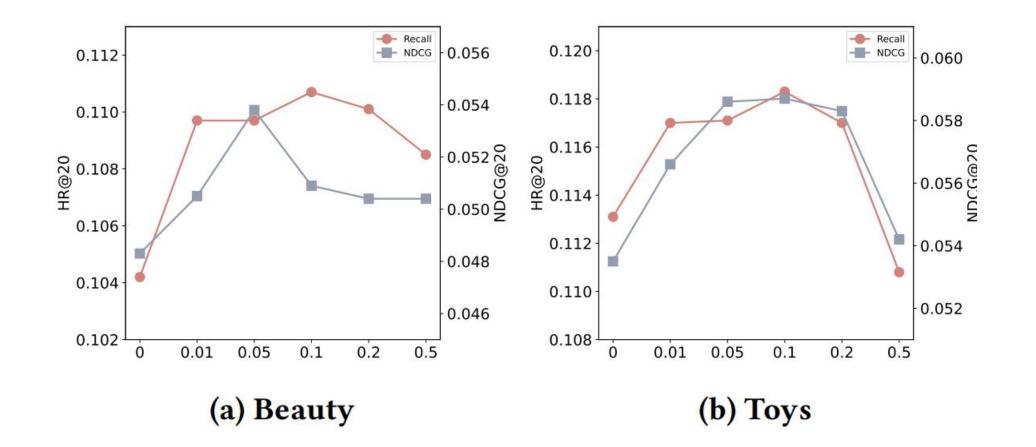


Figure 4: Recommendation Performance w.r.t α

Experiments

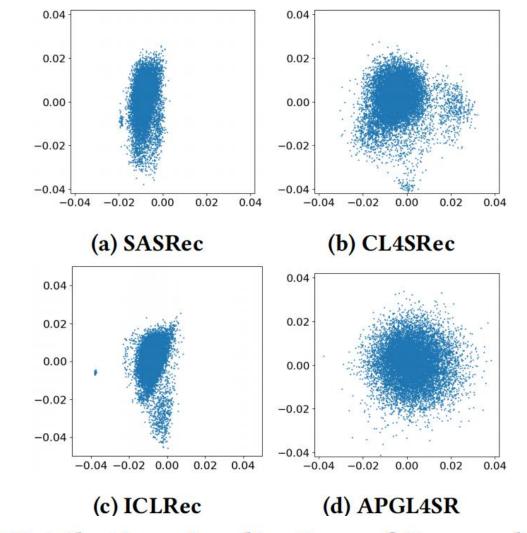


Figure 5: Distribution visualizations of item embeddings.

